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It is shown that a consistent application of the pi/3 approximation of the Hartree- 
Fock-Slater method requires the use of one specific procedure, the sum method, 
for the calculation of the energy Es 1 of singlet excited states of closed shell mole- 
cules. Further, Es 1 is found to be in reasonable agreement with experiment for a 
number of molecules, contrary to the energy Es 2 obtained according to another 
method discussed in the literature. The calculation of other multiplet splittings 
than singlet-triplet in the Hartree-Fock-Slater method is also considered. 
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1. Introduction 

The Hartree-Fock-Slater Method [1 ] has proved itself to be a powerful tool for calcula- 
tions of excitation energies [2, 3]. Bagus and Bennett [4] have recently shown from 
numerical results that when singlet-triplet splittings are calculated by the Xa method, 
using two independent expressions derivable from one-electron theory, the results 
differ by a large amount. These authors expressed caution at the quantitative value of 
the splittings and made no mention of the absolute values of the singlet excitation 
energies. 

This communication begins by an analysis of the statistical exchange expression [ 1] in 
Sect. 3, where it is shown that the statistical exchange approximation only in general 
leads to the well-known statistical energy expression [ 1] for single determinantal wave 
functions. The results by Bagus and Bennett are discussed in Sect. 4, where it is shown 
that only one of the two values for the triplet-singlet splitting is consistent with the 
statistical exchange approximation. Finally, the conditions under which one can calcu- 
late multiplet energies by the Hartree-Fock-Slater method are discussed in Sect. 5. 



262 T. Ziegler et al. 

2. Computational Details 

The DVX~ method by Baerends, Ellis and Ros [5] was used in connection with a 
double zeta STO basis set [6]. The geometry of all excited states was taken as that of 
the ground state. The energy of the excited states (relative to ground state) was 
calculated by the transition state method [1 ]. A value of 0.7 was used for the exchange 
parameter, ~ [5]. 

3. Statistical Energy Expression 

We begin by showing under what conditions the statistical exchange approximation [1] 
leads to the well-known statistical energy expression [1 ]. 

The total energy of aN-electron wave function can be written in a compact form in 
terms of the one- and two-electron density matrices [1], p l(Xl, x'1) and p2(xl, x2, 
X'I, X2), as 

e = f f (x1)p , (x , ,x i )dx ,  + l fp2(x l , x2 )  k d X l d X  2 (3.1) 
x = x ' r12 

where the notation P2(xl, x2) is used for the diagonal element of the two-electron 
density matrix (later in the text, p2(xl) is used for the diagonal element of the corres- 
ponding one-electron density matrix). The operator f (x l )  represents the electronic- 
kinetic energy as well as the attraction between the electrons and the nuclei, and x i is 
the general coordinate for an electron with space coordinate, r/., and spin coordinate, s i. 
The function p2(xl, x2) can be written in terms of four spin components, 

P2 (Xl, X2) = P ~ ( r  1, r2 )~ Oe2 (s2) 

+ p~ l,r2 )o~2(Sl)132 (s2) 

+ 02~(rl,r2)/32(Sl)OZ2(s2) 

+ p~(r  1, r2 )132 (sl)/32 (s2), (3.2) 

where O~ ~ and O~ 5 give the probability of finding two electrons of the same spin (c~ 
and/3, respectively) at (rl,r2) and/9~, O~ ~ the probability of finding two electrons of 
different spin at (r 1,r2). Substitution of Eq. (3.2) into Eq. (3.1) then yields, after a 
little manipulation, an energy expression which is suitable for a discussion of the 
statistical exchange approximation and the corresponding statistical energy expression. 

E= f pl(x1,x;)f(x',)dx1 +�89 f. Pl(Xl)Pl(x2) lc lx ,dx2 
x = x '  r12 

+ �89 f P~(rl)P~(rj'r2)~176 dXldX2 

+ �89 f p~(r,)Px~(r,, r2)~ 2 (s,)/3 2 (s2) % dx,dx2 
r12 
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+ �89 f P~(rl)P~(r1,r2)G2(Sl)[J2(s2) % dxldX 2 
r12 

+ �89 f p18(rl)PxP~(r1 ' r2)/32(sl)c~2(s2 ) 1 dxldX2 
F12 

where 

_ ] P 2  t I, 2) 
- [ p?(r2) J �9 

and 

[ p~/3(r 1 ' r2) p~(r=)] P~ee(rl'r2)= [ ~ 

(3.3) 

Analogous expressions are obtained for the function pBx~ by replacing ~ for ~ in Eq. (3.4), 
and for the function p#e by permuting ~ and 13 in Eq. (3.5). p~ and p~ are the spin 
densities corresponding to Ol- 

The application of the statistical exchange approximation [7], 

fp~(rl)p~(rl,r2 ) rl~21 dr ldr2 ~ - K  f p~(rl)  [p~(rl) ] ~/3 (3.6) 

with a similar expression involving px ~ now gives 

E ~ ~(Pl)  + Ec~ (3.7) 

where 

E(P l )=  f Pl(Xl'X'l)f(x'l)dXl +�89 f Pl(Xl)Pl(x2) l 
x =x' r12 

f p~(rl) [p~(rl)] 1/3 dr 1 _ K f p~(r,) [p~l(rl)] 1/3 dr 1 (3.8) ~K 

is the well-known expression for the statistical energy [ 1 ], and 

= �89 f pCe(rl)P~v~(r1,r2)o:2(rl}132(r2)L dxlClX 2 
r12 

+ 1 I Pe(rl)P#~(r" r2)132(r')u2(r2) l_ dx]dx2. (3.9) 
r12 

The energy E in Eq. (3.7) is not identical to the statistical energy E(pl) unless E e~ is 
zero. This is the case for a single determinantal wave function where one has, 

O~/3(rl, r2) = p?(rl)P~l(r2), p~2Oe(rl, r2) = O~l(rl)p?(ra), (3.10) 

and correspondingly px ~ = px ~ = 0. The term E ~ is in general not zero for multiplets 
with a multideterminantal wave function. In those cases, it is not consistent with the 
statistical exchange approximation to calculate the energy E of Eq. (3.7) from the 
statistical energy expression, E(pl). 

(3.4) 

(3.5) 
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It is, however, possible in a number of cases to express a multiplet energy, H, as a 
weighted sum of one-determinantal energies E(Di) , 

H = ~. CIE(Di) (3.11) 
i 

and one might in those cases try to calculate H approximately by replacing E(Di) with 
the statistical energy E(pil). We get 

g - ~  2 Cr (3.12) 
i 

where p[ is the density corresponding to the one-determinantal wave function D i. This 
procedure, which we call the sum method and discuss in the next section, allows us to 
approximate the averaged configuration energy (the average energy of all possible deter- 
minants in a given configuration) in the following way, 

i=1  

where N is the total number of different one-determinantal wave functions (with 
densities, p~) due to a given electronic configuration. 

It might appear that one could avoid the troublesome term E ~ by applying the statistical 
exchange approximation to the last two terms of the following expression for the total 
energy: 

E= f pl(xl,xl)f(x~)dxi +�89 f pl(xl)Pl(x2) l dxldx2 
x= x ' /'12 

+ ~ f p~ (r l ) ( P~al(r l , r2) + P~fl (r l, r2) ) o~2(Sl )OZ2(s2) % 2 

+�89 f P~l(rl) ( p~x~(rl' r2) + p~xa(re' r2)} ~2(Sl)~2(s2) % (3.15) 

This proposal has some merit since the energy of Eq. (3.15) has the same value numeri- 
cally as the energy of Eq. (3.3). It is shown in the Appendix 1, that this would require 

p:~a(rl,r2) + pJ ( r l , r2 )  , - p~(r2) (3.16) 
r l  ---> r2 

with a similar condition for px ~ + px ~. Since pff~ goes to p~(r2) as r 1 goes to r 2 we are 
left with a condition that is generally true only for single determinantal wave functions, 
namely that p~(r2, r2) is zero. 

Slater has on several occasions [1,7] given an expression for the statistical energy of 
an averaged configuration which has the form, E(p~V). The function E(pl) is defined 
in Eq. (3.8), and p~V is the averaged density of all single determinantal wave functions 
due to a given configuration. The expression E(pff), which in general differs from that 
proposed in Eq. (3.13), is obtained by writing the averaged configuration energy, Ear , 
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in the form given in Eq. (3.15) and then applying the statistical exchange approximation 
to the last two terms. It  is shown in Appendix 2 that such a procedure is inconsistent 
with the statistical exchange approximation in the sense that O~a(rl ,  r l )  + pg~(rl ,  r l )  =P 
-p~(rl). We will return to Slater's expression in the next section. 

4. Calculation of the Singlet-Triplet Splitting 

Bagus and Bennett [4] discussed an electronic configuration consisting of  closed shells 
plus two singly occupied molecular orbitals. Since, for the following discussion, the 
closed shells are irrelevant, the configuration can be represented simply as (a) l (b)  1, 
f rom which one can write the usual four state functions, 

13q, ++ = 1 +-  -+  = - -  = l a b l ,  3o'I' -~ - ( lab l+lab l ) ,  _ ~  [abl, and 
V 2  

1 +-- --+ 
loq~ = ~  ( l a b [ -  Tab[). 

The sum method described in Sect. 3 affords a triplet energy E T and a singlet energy, 
Els, in the following way I . 

The statistical energy of D1, which we will call ET(D1) since it is a triplet energy calcu- ++ 
lated from the density of  D1 = lab I, is given by 

E T ( D 1 ) = E ~  f (a(1)a(1)+b(1)b(1)} [a(t)a(1)+b(1)b(1)]l /a 'dr a (4.1) 

where K is a positive constant, and E ~ is the part of the energy common for the three + -  
e x p r e s s i o n s  in Eq. (4.1), Eq. (4.2) and Eq. (4.3). The statistical energy o f D  2 = lab l, 
half triplet and half singlet, is given by 

�89 + Es(D2) ) = E ~ - K I a(1)a(1)  [a(1)a(1)] 1/3 "dr1 

- K  I b (1)b(1)  [b(1)b(1)] 1/3" d'c 1. (4.2) 

Eq. (4.1) directly gives a triplet energy which, when substituted into Eq. (4.2) in turn 
gives the singlet energy, E~.  Calculated values o f E  T and E} are shown in Table 1 for a 
number of  molecules. They compare well with experiment. The averaged configuration 
energy consistent with the sum method (Eq. (3.13)) is ~ {2ET(D1) + ET(D2) + E s (Dz)}. 
We will now make a comparison with Slater's expression given by 

{ET(D3) + ~Es(D3) = E ~ - K ~ {a(1)a(1) + b(1)b(1)} 

x {(a(1)a(1)  + b(1)b(1))]l/a}drl (4.3) 

1 Strictly speaking, the subscripted E's E S and ET, of this section should be replaced by H's to 
conform with our general notation for a multiplet energy. However, we feel that in the discussion 
of the particular case of singlet and triplet energies, the notation adopted is less awkward. 
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where the index D 3 indicates that the density used in Eq. (4.3) is the average of the 
densities of the singlet state and the three components of the triplet state. The 
identification is made implicit in the left-hand side of Eq. (4.3). The energy in Eq. (4.3) 
is clearly higher than ET(D1) of Eq. (4.1) but, what is more important, is also higher 
than �89 + Es(D2)} of Eq. (4.2). The latter point is shown numerically in Table 1 
and follows from the reasonable assumption that the exchange integral 

f ui(1)ui(1) " [ ~" ui(1)ui(1 ) + (X/~I -- X 2) uj(1)uj(1)] 1/3" dr  1 

has its maximum for X = 1. The singlet energy, E},  which one can calculate by substi- 
tuting Er(D1) for ET(D3) in Eq. (4.3) is consequently higher than E}, and this is still 
the case if one calculates, E}, E}, from a set of orbitals (a, b) optimized with respect 
to Eq. (4.3) as shown in Table 1 (by the numbers in parentheses). It is therefore clear 
that the discrepancies noted by Bagus and Bennett (4) between (E} - JET) and (E} - ET) 
are not primarily due to the use of not properly optimized orbitals in the different 
energy expressions, but come from the inconsistent use of Eq. (4.3) in connection 
with the sum method. 

We now return to the sum method and discuss its application to a general electronic 
configuration. The energy E(Di) of each possible single determinant D i in a given con- 
figuration is, in general, a weighted sum of multiplet energies Hf, 

E(Di) = E Cq/~. (4.4) 
i 

The idea of the sum method is to replace E(Di) in Eq. (4.4) by the corresponding 
statistical energy E(&) and in this way obtain a set of equations 

E(&) = • Q/Hf (4.5) 
J 

from which one can find the multiplet energies//1., provided that the number of deter- 
minants of different energy, E(oi), is the same as the number of multiplets with 
different energy. 

We amplify these remarks in the next section. 

5. Spatial Multiplets 

If an excited configuration gives rise to two or more state functions with the same 
symmetry and the same spin, calculation of the individual energies of these state functions 
goes beyond any one electron model. For example, in the case of CrO~ it is not possible 
to derive the energies of the two singlet states ofA ~ symmetry which arise from the 
configuration (tl)S(2e)1(5t2) 1 [16] either by the Hartree-Fock or by the Hartree-Fock- 
Slater method without configuration interaction. 

If all state functions of the same spin have different space symmetries, it is possible to 
derive their energies by the Hartree-Fock method but not necessarily by the Hartree- 
Fock-Slater method. As stated in the previous section, the general condition for 
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Table 2. Some triplet and singlet energies for CO, Nz, C61-16 and CrO42- in eV 

T. Ziegler et al. 

Excited State 
Eexp Compound Configuration Symmetry E~ al L~ al E2~ xp S 

CO a (l~r)a(27r)a A 9.65 10.20 9.2 b 10.5 b 

N; a (Dru)3(2ng) 1 A 8.70 10.58 8.9 c 10.3 c 

C6H6 (leg)a(2eu)l E2u 4.65 6.18 4.6 d 6.9 d 

CrO42- (q)S(2e)t (T1 2.71 2.83 - 2.8 e 

T 2 2.79 3.28 - 3.32 e 

a The configuration (17r)a(27r) 1 in CO and N 2 has the states (1,3)E(-) 0,3)E(+ ) and (l'3)A. Only the 
(1,a)A states can be resolved by the HFS method. 

b Ref. [11]. c Ref. [13]. d Ref. [14]. e Ref. [15]. 

calculating the energy of  all multiplets in a given configuration is that  the number of  
determinants with different energy is the same as the number o f  multiplets with 
different energy. The excited configuration (q)S(2e) l  in CrO24-generates the four states 
[16] 3,1T1,3'1T2, and the determinants ,D 1 = rt~z2Ya 1, D2 = [t~z2~a [,D3 = [tlz2~bl and 

+ + 
D4 = f.tlz2%l, all of  different energy. FromD1 and D~ one can obtain the energy o f  

3,1 T1 and from D 3 and D4, the energy o f  3,1 T2. An example in which not all multiplets 
can be calculated is the first excited configuration o f  benzene, ( e l g )  3 (e2u) 1 , which gives 
rise to six states 3'lEau, 3 ' lB lu  and 3'1B2u [16],  but  for which one has only four deter- 

minants of  different energy ,D 1 + - + + + + = I elgae~ua [, D2 l, D3 and = l e lgae2ua = [ [ e lgae2ub 
D4 [ + - = eagae2ut,[. One can derive f r o m D  1 andD2 the energy of  3'1Elu, whereasD 3 and 
D4 can only give the average triplet and average singlet energy of  B lu  and B2u. In Table 
2 we give some calculated results for C r 0 ~ -  , C6H6, N 2 and CO. As was seen in Table 1, 
quite satisfactory agreement is obtained between calculated and experimental  muitiptet  
energies where these can be compared.  

Acknowledgement. We thank the National Research Council of Canada for financial support of this 
work. We would also like to thank Dr. W. Heijser for the use of his unrestricted-HFS version of the 
DVM-HFS program system. 

Appendix 1 

The Statistical Exchange Approximat ion  
In this appendix,  we provide an analysis o f  the assumptions which leads to the statistical 
exchange approximation [1 ] given by 

c a  r ~ 1 / 3 d r l .  f pl (rl)Px (1,r2)__--drxdr 2 -  - K  f p ~ ( r l ) [ p ~ ( r l ) ]  (A.1) 
r12 
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Here p~(rl) is the one-electron density matrix for electrons with a spin, and pff~(r 1, r~) 
is a function defined in Eq. (3.4). p~a(r 1, r 2) depends on the two-electron density p~.  
The function O~ c~ has the following properties, provided it is constructed from an 
antisymmetric wave function: 1) it goes to zero when rl goes to r 2 ; 2)it converges to 
the uncorrelated two-electron density p~(rl)pT(r2) on infinite separation of the two 
electrons; and 3) it equals (n - l)p~(rl) after integration over r 2, where n is the number 
of electrons with a-spin. This gives the following properties for p ~ :  

(1) pff~ r 2 ) ~ l  _ 1:2 I--"0 -- PT(rl) 

(2)  ~ ,- 0 Px (rl,r2) I~1 - r21~ o~ 

(3) i ~ = 
Px (rl, r2)dr2 -1 .  

In the statistical exchange approximation, pff~ is replaced by the function g~(r12 ) 
defined as 

g~(r,2) = {~]~(r') r12 < R  

r,2 ;> R. (A.2) 

The new function ga(q2) is clearly constructed in such a way that it satisfies (1) and (2), 
and by requiring that it also satisfies (3) we get an expression for the parameter R in 
terms of p~(rt). Thus, 

R 

f g ~@12)dr2 = - f P~(r l )  dr,~ = - I (A.3)  
o 

or 

R ( 3 r ; c ~ )  1/3 
= -~-,o~ (rl) (A.4) 

Substituting gC~(r12 ) for p#a then gives us 

R 

f f  dr,dr= --f d,, ;P~(rl)P~(rl)l~-dr12 (A.5) 
0 /'12 

or 

[97r] 1/3 f' 
1 [ ~ - 1  JP~(rl)[P~(rl)]l/3drl (A.6) 

The scale factor K of Sect. 4 has in our derivation the value [9~r/2] 1/3. It has become 
:a[3/4rr] where a is an common practice to use a scale factor of the form 9 :J3 adjustable 

parameter. 

Appendix 2 

Slater writes the averaged configuration energy, Eav,in the form of Eq. (3.15), see 
i.e. Eq. (A.13) and the left side of Eq. (A.14) in Ref. [7]. The statistical energy 
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expression E(p), is then arrived at by applying the statistical exchange approximation 
to the last two terms of  Eq. (3.15). Such a procedure is only justified provided that  
px~C~(rl, r l )  + px~(rl ,  r l )  = - p ~ ( r l )  for all values of  r l .  We will now demonstrate that 
this is not  true for an averaged configuration by showing that in this case Px (r l ,  r l )  - 
-px~(rl)  for all r I and that  p~r r l )  is different from zero (negative) at least for some 
values of  r 1. We have according to Ref. [7] for the appropriate terms 

~a~r [(qio -- qi)~kl uik(rl)uitc(rl)uil(rl)Uil(rl) 
Px t ,, r , ) : - [ P ~ ( r l ) ]  -1 "~ qi q ~ o ' ~ = 5  

+ ( q i  - 1)~ uik(rl)uik(rl)Uil(rl)Uil(rl) 

~-'uik(rl)uik(rl)ufl(rl)u]l(rl) ] 
+ ; . q i ?  - - - - -  

jr ~l qio " q]o 

�9 qi[(qio-- qi) ~uig(rl)uik(rl)uu(rl)uil(rl)] 
px~r r l )  = - [ p a ( r , ) ]  -1" ~ L qio k, qio (qio - 1) j 

and 

(A.7) 

(A.8) 

p~(ra) = ~ .  q~'/o ui(rl)ui(rl)" (A.9) 
1 

Here i and ] count the number of  shells for which the actual and maximal occupation 
numbers are qi and qio, and k, l run over spatial orbitals. It follows immediately from 

Eq. (A.8) that  P~9(rl,  r l )  will be negative for some values of  r l ,  and a straightforward 

collection of  the three terms in Eq. (A.7) will give us px~(r~, r l )  = - P e ( r l ) .  
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